Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6111, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38480832

RESUMO

Remarkable resistance of bacterial biofilms to high doses of antimicrobials and antibiotics is one of their main challenges. Encapsulation of proteolytic enzymes is one of the suggested strategies to tackle this problem. In this regard, the antibacterial and anti-biofilm activity of biocompatible hyaluronic acid- Lysine nanogels containing serratiopeptidase (SRP-loaded HA-Lys nanogel) was assessed against P. aeruginosa and S. aureus strains. SRP-loaded HA-Lys nanogel was prepared using dropping method and optimized by Box-Behnken experimental design. These formulations were studied for physical characterization, release profile, stability, bioactivity, and anti-biofilm effects. The particle size, polydispersity index (PDI), and surface charge were measured by Zetasizer Nano ZS. The average particle size and zeta potential of the optimum sample were 156 nm and -14.1 mV, respectively. SRP release showed an initial burst followed by sustained release and the highest release was around 77%. Enzyme biological activity data revealed the higher efficiency of free SRP compared to SRP-loaded HA-Lys nanogel. The time-kill assay showed that both forms of SRP-loaded HA-Lys nanogel and blank HA-Lys nanogel showed significant antimicrobial activity against examined bacteria in comparison to the free enzyme. The obtained results demonstrated improved anti-biofilm efficacy and down regulation of tested biofilm genes for both SRP-loaded HA-Lys nanogel 100% and blank HA-Lys nanogel 100% compared to SRP 100%.


Assuntos
Ácido Hialurônico , Lisina , Polietilenoglicóis , Polietilenoimina , Nanogéis/química , Ácido Hialurônico/química , Lisina/farmacologia , Staphylococcus aureus/fisiologia , Peptídeo Hidrolases/farmacologia , Antibacterianos/farmacologia , Biofilmes
2.
Arch Microbiol ; 206(4): 180, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38502196

RESUMO

Serratiopeptidase is a bacterial metalloprotease used in a variety of medical applications. The multidimensional properties of serratiopeptidase make it noticeable as a miraculous enzyme. Anti-coagulant, anti-inflammatory and anti-biofilm activity of serratiopeptidase making it useful in reducing pain and swelling associated with various conditions including arthritis, diabetes, cancer, swelling, pain and also thrombolytic disorders. It breaks down fibrin, thins the fluids formed during inflammation and due to its anti-biofilm activity, can be used in the combination of antibiotics to reduce development of antibiotic resistance. However, some drawbacks like sensitivity to environmental conditions and low penetration into cells due to its large size have limited its usage as a potent pharmaceutical agent. To overcome such limitations, improved versions of the enzyme were introduced using protein engineering in our previous studies. Novel functional serratiopeptidases with shorter length and higher stability have seemingly created a hope for using this enzyme as a more effective therapeutic enzyme. This review explains the structural properties and functional aspects of serratiopeptidase, its main characteristics and properties, pre-clinical and clinical applications of the enzyme, improved qualities of the modified forms, different formulations of the enzyme, and the potential future developments.


Assuntos
Metaloproteases , Peptídeo Hidrolases , Humanos , Peptídeo Hidrolases/metabolismo , Metaloproteases/química , Anti-Inflamatórios , Dor/tratamento farmacológico
3.
Appl Microbiol Biotechnol ; 107(21): 6487-6496, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37672071

RESUMO

Today, enzymatic treatment is a progressive field in combating biofilm producing pathogens. In this regard, serratiopeptidase, a medicinally important metalloprotease, has been recently highlighted as an enzyme with proved anti-biofilm activity. In the present study, in order to increase the long-lasting effects of the enzyme, serratiopeptidase and the novel engineered forms with enhanced anti-biofilm activity were immobilized on the surface of cellulose nanofibers (CNFs) as a natural polymer with eminent properties. For this, recombinant serratiopeptidases including the native and previously designed enzymes were produced, purified and conjugated to the CNF by chemical and physical methods. Immobilization was confirmed using different scanning and microscopic methods. The enzyme activity was assessed using casein hydrolysis test. Enzyme release analysis was performed using dialysis tube method. Anti-biofilm activity of free and immobilized enzymes has been examined on Staphylococcus aureus and Pseudomonas aeruginosa strains. Finally, cytotoxicity of enzyme-conjugated CNFs was performed by MTT assay. The casein hydrolysis results confirmed fixation of all recombinant enzymes on CNFs by chemical method; however, inadequate fixation of these enzymes was found using cold atmospheric plasma (CAP). The AFM, FTIR, and SEM analysis confirmed appropriate conjugation of enzymes on the surface of CNFs. Immobilization of enzymes on CNFs improved the anti-biofilm activity of serratiopeptidase enzymes. Interestingly, the novel engineered serratiopeptidase (T344 [8-339ss]) exhibited the highest anti-biofilm activity in both conjugated and non-conjugated forms. In conclusion, incorporation of serratiopeptidases into CNFs improves their anti-biofilm activities without baring any cytotoxicity. KEY POINTS: • Enzymes were successfully immobilized on cellulose nanofibers using chemical method. • Immobilization of enzymes on CNFs improved their anti-biofilm activity. • T344 [8-339ss] exhibited the highest anti-biofilm activity in both conjugated and non-conjugated forms.


Assuntos
Celulose , Nanofibras , Celulose/química , Nanofibras/química , Caseínas , Biofilmes
4.
Sci Rep ; 13(1): 8652, 2023 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-37244966

RESUMO

Non-coding RNAs, including Inc-RNA and miRNA, have been reported to regulate gene expression and are associated with cancer progression. MicroRNA-561-3p (miR-561-3p), as a tumor suppressor, has been reported to play a role in preventing cancer cell progression, and MALAT1 (Lnc-RNA) have also been demonstrated to promote malignancy in various cancers, such as breast cancer (BC). In this study, we aimed to determine the correlation between miR-561-3p and MALAT1 and their roles in breast cancer progression. The expression of MALAT1, mir-561-3p, and topoisomerase alpha 2 (TOP2A) as a target of miR-561-3p was determined in BC clinical samples and cell lines via qRT-PCR. The binding site between MALAT1, miR-561-3p, and TOP2A was investigated by performing the dual luciferase reporter assay. MALAT1 was knocked down by siRNA, and cell proliferation, apoptotic assays, and cell cycle arrest were evaluated. MALAT1 and TOP2A were significantly upregulated, while mir-561-3p expression was downregulated in BC samples and cell lines. MALAT1 knockdown significantly increased miR-561-3p expression, which was meaningfully inverted by co-transfection with the miR 561-3p inhibitor. Furthermore, the knockdown of MALAT1 by siRNA inhibited proliferation, induced apoptosis, and arrested the cell cycle at the G1 phase in BC cells. Notably, the mechanistic investigation revealed that MALAT1 predominantly acted as a competing endogenous RNA in BC by regulating the miR-561-3p/TOP2A axis. Based on our results, MALAT1 upregulation in BC may function as a tumor promoter in BC via directly sponging miRNA 561-3p, and MALAT1 knockdown serves a vital antitumor role in BC cell progression through the miR-561-3p/TOP2A axis.


Assuntos
MicroRNAs , Neoplasias , RNA Longo não Codificante , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Interferente Pequeno , Genes Supressores de Tumor , Apoptose/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética
5.
Chem Biol Drug Des ; 100(4): 553-563, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35729860

RESUMO

The clinical application of serratiopeptidase as an anti-biofilm and anti-inflammatory agent is restricted due to the enzyme sensitivity to the environmental conditions. In our previous study, six enzyme variants were designed by introducing different mutations and truncations that exhibited higher thermal stability. In the present study, the interaction pattern and affinity of variants to substrates and inhibitors were studied using molecular docking and in vitro studies. CABS-dock and Swiss-dock servers were used for substrate (Bradykinin and Substance-P) and inhibitor (Lisinopril and EDTA) docking, respectively. The interactions were analyzed using LigPlot, UCSF Chimera, and visual molecular dynamics packages. Free energy calculations were performed using PRODIGY. Finally, the native enzyme and the best variant in terms of interaction pattern and binding score were selected for in-vitro affinity analysis toward Bradykinin and EDTA using HPLC and casein hydrolysis test, respectively. Molecular docking revealed that T344 [8-339ss] variant showed a different pattern for both substrates and inhibitors in the way that none of the native active site residues were involved in the receptor binding. As revealed by in vitro studies, T344 [8-339ss] displayed the highest number of hydrogen bond formation in docking with Bradykinin and remarkable decrement in the binding affinity for EDTA. This was the first report on the design of novel serratiopeptidase with higher activity to Bradykinin and improved resistance to EDTA as an inhibitor.


Assuntos
Bradicinina , Caseínas , Anti-Inflamatórios , Ácido Edético , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Lisinopril , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Peptídeo Hidrolases
6.
Arch Microbiol ; 204(6): 343, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35596084

RESUMO

Cold atmospheric plasma (CAP) is being used recently as a modern technique for microbial random mutagenesis. In the present study, CAP was used to induce mutagenesis in L. enzymogenes which is the bacteria known for producing proteolytic enzymes especially lysyl endopeptidase (Lys C). Enhanced proteolytic activity was the main criteria to select mutant strains. Therefore, the cell suspension of L. enzymogenes strain (ATCC 29487), was exposed to CAP for 30, 45, 90, and 150 s. The proteolytic activity of mutant strains was screened initially by radial caseinolytic assay and then by Ansons method in different phases of bacterial growth in the selected mutants. The purification process of Lysyl endopeptidase as the target enzyme was optimized and for enlightening molecular aspect of CAP mutagenesis, the sequences of the upstream and coding regions of lys C gene from 10 selected mutant strains were determined. The bacterial survival assessment showed that the more CAP treatment time, the less survival rate, however, in all exposure times, a number of survived mutants showed enhanced proteolytic activity. Among 38 out of 100 examined mutants which showed higher proteolytic activity than that of wild type, the M1-30 s mutant exhibited the highest increment to 1.94 fold. The SDS-PAGE analysis showed expected size of purified Lys C from M1-30 s. The Lys C gene from M14-150 s mutant strain (1.4-fold increment) harbored three point mutations which can be effective in enhancing protease activity. In conclusion, the results highlighted the role of CAP for strain improvement process to obtain industrial strains.


Assuntos
Lysobacter , Gases em Plasma , Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lysobacter/genética , Lysobacter/metabolismo , Gases em Plasma/metabolismo , Gases em Plasma/farmacologia
7.
Microb Cell Fact ; 20(1): 223, 2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34895227

RESUMO

BACKGROUND: Identification of high-expressing colonies is one of the main concerns in the upstream process of recombinant protein development. The common method to screen high-producing colonies is SDS-PAGE, a laborious and time-consuming process, which is based on a random and qualitative way. The current study describes the design and development of a rapid screening system composed of a dicistronic expression system containing a reporter (enhanced green fluorescent protein, eGFP), protein model (staphylokinase, SAK), and a self-inducible system containing heat shock protein 27 (Hsp27). RESULTS: Dicistronic-autoinducible system expressed eGFP and SAK successfully in 5-ml and 1-L culture volumes. High expressing colonies were identified during 6 h via fluorescent signals. In addition, the biological activity of the protein model was confirmed semi-quantitatively and quantitatively through radial caseinolytic and chromogenic methods, respectively. There was a direct correlation between eGFP fluorescent intensity and SAK activity. The correlation and linearity of expression between the two genes were respectively confirmed with Pearson correlation and linear regression. Additionally, the precision, limit of detection (LOD), and limit of quantification (LOQ) were determined. The expression of eGFP and SAK was stable during four freeze-thaw cycles. In addition, the developed protocol showed that the transformants can be inoculated directly to the culture, saving time and reducing the error-prone step of colony picking. CONCLUSION: The developed system is applicable for rapid screening of high-expressing colonies in most research laboratories. This system can be investigated for other recombinant proteins expressed in E. coli with a potential capability for automation and use at larger scales.


Assuntos
Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Ensaios de Triagem em Larga Escala/métodos , Proteínas Recombinantes/metabolismo , Proteínas de Bactérias/genética , Fluorescência , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Metaloendopeptidases/genética , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes/genética
8.
World J Microbiol Biotechnol ; 38(1): 17, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34897561

RESUMO

Serratiopeptidase is a bacterial protease that has been used medicinally in variety of applications. Though, some drawbacks like sensitivity to environmental conditions and low penetration into cells limited its usage as a potent pharmaceutical agent. This study aimed to produce four novel truncated serratiopeptidase analogs with different lengths and possessing one disulfide bridge, in order to enhance protease activity and thermal stability of this enzyme. Mutagenesis and truncation were performed using specific primers by conventional and overlap PCR. The recombinant proteins were expressed in E. coli cells then purified and their protease activity and stability were checked at different pH and temperatures in comparison to the native form of the enzyme, Serra473. Enzyme activity assay showed that T306 [12-302 ss] was not further active which could be due to the large truncation. However, T344 [8-339 ss], T380 [8-339 ss] and T380 [12-302 ss] proteins showed higher proteolytic activity comparing to Serra473. These analogs were active at temperatures of 25-90 °C and pH 6-9.5. Interestingly, remaining enzyme activity of T344 [8-339 ss], T380 [8-339 ss] and T380 [12-302 ss] forms at 90 °C calculated as 87, 83 and 86 percent, respectively, comparing to the activity at room temperature. However, residual activity at the same conditions was 50% for the full length enzyme. Formation of disulfide bond in engineered serratiopeptidases could be the main reason for higher thermal stability compared to Serra473. Thermostability of T344 [8-339 ss], as the most thermostable designed serratiopeptidase, was additionally confirmed using differential scanning calorimetry.


Assuntos
Estabilidade Enzimática , Escherichia coli/metabolismo , Peptídeo Hidrolases/genética , Peptídeo Hidrolases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Engenharia Genética , Concentração de Íons de Hidrogênio , Microbiologia Industrial , Mutagênese Sítio-Dirigida , Proteólise , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura
9.
Sci Rep ; 11(1): 4576, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33633341

RESUMO

IPTG-inducible promoter is popularly used for the expression of recombinant proteins. However, it is not suitable at the industrial scale due to the high cost and toxicity on the producing cells. Recently, a Self-Inducible Expression (SILEX) system has developed to bypass such problems using Hsp70 as an autoinducer. Herein, the effect of other heat shock proteins on the autoinduction of green fluorescent protein (EGFP), romiplostim, and interleukin-2 was investigated. For quantitative measurements, EGFP expression was monitored after double-transformation of pET28a-EGFP and pET21a-(Hsp27/Hsp40/Hsp70) plasmids into E. coli using fluorimetry. Moreover, the expression level, bacterial growth curve, and plasmid and expression stability were compared to an IPTG- inducible system using EGFP. Statistical analysis revealed a significant difference in EGFP expression between autoinducible and IPTG-inducible systems. The expression level was higher in Hsp27 system than Hsp70/Hsp40 systems. However, the highest amount of expression was observed for the inducible system. IPTG-inducible and Hsp70 systems showed more lag-time in the bacterial growth curve than Hsp27/Hsp40 systems. A relatively stable EGFP expression was observed in SILEX systems after several freeze-thaw cycles within 90 days, while, IPTG-inducible system showed a decreasing trend compared to the newly transformed bacteria. Moreover, the inducible system showed more variation in the EGFP expression among different clones than clones obtained by SILEX systems. All designed SILEX systems successfully self-induced the expression of protein models. In conclusion, Hsp27 system could be considered as a suitable autoinducible system for protein expression due to less metabolic burden, lower variation in the expression level, suitable plasmid and expression stability, and a higher expression level.


Assuntos
Escherichia coli/genética , Expressão Gênica , Vetores Genéticos/genética , Proteínas de Choque Térmico/metabolismo , Proteínas Recombinantes/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Engenharia Genética , Humanos , Proteínas Recombinantes/metabolismo
10.
Iran J Public Health ; 49(5): 931-939, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32953681

RESUMO

BACKGROUND: Serratiopeptidase is a bacterial metalloprotease, which is useful for the treatment of pain and inflammation. It breaks down fibrin, thins the fluids formed during inflammation and acts as an anti-biofilm agent. Because of medicinally important role of the enzyme, we aimed to study the cloning and the expression optimization of serratiopeptidase. METHODS: The heat-stable serratiopeptidase (5d7w) was selected as the template. Cloning into pET28a expression vector was performed and confirmed by colony PCR and double restriction enzyme digestion. The recombinant protein was expressed in Esherichia coli BL21 and confirmed by SDS-PAGE and Western blot analysis. Different parameters such as expression vector, culture media, post-induction incubation temperature, inducer concentration, and post-induction incubation time were altered to obtain the highest amount of the recombinant protein. RESULTS: Serratiopeptidase was successfully cloned and expressed under optimized conditions in E. coli which confirmed by western blot analysis. The optimal conditions of expression were determined using pQE30 as vector, cultivating the host bacteria in Terrific Broth (TB) medium, at 37° C, induction by IPTG concentration equal to 0.5 mM, and cells were harvested 4 h after induction. CONCLUSION: As serratiopeptidase is a multi-potent enzyme, the expressed recombinant protein can be considered as a valuable agent for pharmaceutical applications in further studies.

11.
Iran J Microbiol ; 12(6): 601-606, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33613915

RESUMO

BACKGROUND AND OBJECTIVES: Increasing the amount of protease from microbial sources is in the focus of attention. Random mutagenesis by physical methods like ultraviolet (UV) radiation is a cost effective and convenient procedure for strain improvement. Therefore, in the present study attempts were made to investigate the effect of UV radiation on Lysobacter enzymogenes in order to increase its protease activity. MATERIALS AND METHODS: UV mutagenesis was induced in L. enzymogenes fresh culture at the distance of 20 cm from light source for different exposure times of 70, 90, 150 and 200 seconds. The mutated isolates were randomly cultured from the nutrient agar medium to casein agar plate, as a selective medium. The primary screening was performed by observing hydrolysis of casein in the plate and the secondary screening was carried out on skim milk agar on the basis of zone of hydrolysis using bacterial supernatants. Quantification of protease activity was done by Anson's method using tyrosine as standard. RESULTS: UV radiation resulted in obtaining 12 mutants out of 100 examined L. enzymogenes strains with increased protease activity. The mutant M2, at 90s exposure time was selected as the best mutant bacterium which produced 1.96 fold more protease over the parent strain. CONCLUSION: Random mutation by UV radiation is a simple and convenient method to increase the protease activity of Lysobacter enzymogenes. Furthermore, it seems that the middle time of exposure to UV, 90 s, was the best time because it can induce mutagenesis but did not hamper the bacteria growth and viability.

13.
J Mol Graph Model ; 84: 43-53, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29909273

RESUMO

Recently protein engineering has been used as a pivotal tool for designing proteins with improved characteristics. While the experimental methods might be laborious and time-consuming, in silico protein design is a time and cost-effective approach. Moreover, in some cases, protein modeling might be the only way to obtain structural information where the experimental techniques are inapplicable. Molecular dynamics (MD) simulation is a method that allows the motion of protein to be simulated in defined conditions on the basis of classical molecular dynamics. MD simulation could widely be used when protein design needs accurate modeling of the target protein dynamics and also descriptions of the relation between conformational changes and function of protein at the atomic level. In this review, the effectiveness and the power of MD simulation in designing proteins with improved characteristics will be discussed.


Assuntos
Simulação de Dinâmica Molecular , Conformação Proteica , Engenharia de Proteínas , Proteínas/química , Aminoácidos/química , Ligação de Hidrogênio , Mutação , Polietilenoglicóis/química , Estabilidade Proteica , Proteínas/genética , Relação Quantitativa Estrutura-Atividade
14.
Med Microbiol Immunol ; 205(1): 85-95, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26243337

RESUMO

The binding domain of Plasmodium vivax Duffy binding protein (PvDBP-II) is a promising blood-stage vaccine candidate for vivax malaria. For the development of a successful vivax malaria vaccine based on DBP-II, the antigenic diversity and also naturally occurring functional antibodies to different PvDBP-II variant types in the various populations must be determined. However, similar to other blood-stage antigens, allelic variation within the PvDBP-II is a fundamental challenge for the development of a broadly efficient vaccine. The present study was performed to define whether the polymorphisms in PvDBP-II influence the nature of functional inhibitory activity of naturally acquired or induced anti-DBP-II antibodies in mice. In this investigation, five genetically distinct variants of PvDBP-II were transiently expressed on the COS-7 cell surface. Erythrocyte-binding inhibition assay (EBIA) was performed using human sera infected with corresponding and non-corresponding P. vivax variants as well as by the use of mice sera immunized with different expressed recombinant PvDBP-IIs. EBIA results showed that the inhibitory percentage varied between 50 and 63 % by using sera from infected individuals, and in case of mouse antisera, inhibition was in the range of 76-86 %. Interestingly, no significant difference was detected in red blood cell binding inhibition when different PvDBP-II variants on the COS-7 cell surfaces were incubated with heterologous and homologous sera infected with PvDBP-II variants. This suggests that the detected polymorphisms in all five forms of PvDBP-II may not affect functional activity of anti-DBP-II antibodies. In conclusion, our results revealed that there are functional cross-reactive antibody responses to heterologous PvDBP-II variants that might provide a broader inhibitory response against all, or at least the majority of strains compared to single allele of this protein that should be considered in development of PvDBP-II-based vaccine.


Assuntos
Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Adesão Celular/efeitos dos fármacos , Variação Genética , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Adolescente , Adulto , Animais , Antígenos de Protozoários/genética , Células COS , Criança , Células Epiteliais/fisiologia , Eritrócitos/fisiologia , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Adulto Jovem
15.
Acta Trop ; 136: 89-100, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24704284

RESUMO

Duffy binding protein (DBP) is a leading vaccine candidate of Plasmodium vivax. The binding domain of DBP (DBP-II) is polymorphic, that may be a major challenge for development of a broadly effective vaccine against vivax malaria. The present investigation was undertaken to explore whether the sequence diversity of DBP-II causes variation in naturally acquired anti-DBP-II antibodies. In this study, the five genetically distinct variants were expressed, and anti-DBP-II responses were measured in P. vivax-infected individuals (n=202). Finally, by performing immune-depletion ELISA experiments, antibody responses to the conserved sites of all allelic forms were evaluated using the corresponding and non-corresponding patients' sera (n=20). In this study, natural P. vivax infection produces IgG against all five examined variant forms of PvDBP-II with no statistically difference. Sequence analysis in the 20 selected samples (for antibody depletion experiment) showed eight distinct haplotypes, DBPI (n=1), DBPIII (n=3), DBPIV (n=1), DBPV (n=1), DBPVI (n=5), DBPIX (n=6), DBPX (n=1), and DBP XI (n=2). The results showed the presence of the cross-reactive antibody responses to heterologous variants of PvDBP-II in Iranian individuals who were infected with distinct allelic forms of the PvDBP-II. Therefore, it is proposed that the majority of antibodies recognized sharing B-cell epitopes and this could overcome the PvDBP-II variation as a one of the biggest challenges of PvDBP-II-based vaccine development.


Assuntos
Anticorpos Antiprotozoários/imunologia , Especificidade de Anticorpos , Antígenos de Protozoários/imunologia , Malária Vivax/imunologia , Plasmodium vivax/metabolismo , Proteínas de Protozoários/imunologia , Receptores de Superfície Celular/imunologia , Aminoácido N-Acetiltransferase , Animais , Antígenos de Protozoários/genética , Epitopos de Linfócito B , Feminino , Regulação da Expressão Gênica , Variação Genética , Humanos , Irã (Geográfico)/epidemiologia , Vacinas Antimaláricas/imunologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Estações do Ano
16.
Infect Genet Evol ; 21: 424-35, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24384095

RESUMO

Region II of Duffy binding protein (PvDBP-II) is one of the most promising blood-stage vaccine candidate antigens against Plasmodium vivax and having knowledge of the nature and genetic polymorphism of PvDBP-II among global P. vivax isolates is important for developing a DBP-based vaccine. By using PCR and sequencing, the present molecular population genetic approach was carried out to investigate sequence diversity and natural selection of dbp-II gene in 63 P. vivax isolates collected from unstable and low transmission malaria-endemic areas of Iran during 2008-2012. Also, phylogenetic analysis, the diversifying natural selection, and recombination across the pvdbp-II gene, including regions containing B-cell epitopes were analyzed using the DnaSP and MEGA4 programs. Twenty two single nucleotide polymorphisms (SNPs, including 20 non-synonymous and 2 synonymous) were identified in PvDBP-II, resulting in 16 different PvDBP-II haplotypes among the Iranian P. vivax isolates. High binding inhibitory B-cell epitope (H3) overlapping with intrinsically unstructured/disordered region (aa: 384-392) appeared to be highly polymorphic (D384G/E385K/ K386N/Q/R390H), and positive selective pressure acted on this region. Most of the polymorphic amino acids, which are located on the surface of the protein, are under selective pressure that implies increased recombination events and exposure to the human immune system. In summary, PvDBP-II gene displays genetic polymorphism among Iranian P. vivax isolates and it is under selective pressure. Mutations, recombination, and positive selection seem to play a role in the resulting genetic diversity, and phylogenetic analysis of DNA sequences demonstrates that Iranian isolates represent a sample of the global population. These results are useful for understanding the nature of the P. vivax population in Iran and also for development of PvDBP-II-based malaria vaccine.


Assuntos
Antígenos de Protozoários/genética , Malária Vivax/parasitologia , Plasmodium vivax/isolamento & purificação , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Adolescente , Adulto , Antígenos de Protozoários/química , Antígenos de Protozoários/metabolismo , Criança , Epitopos de Linfócito B/metabolismo , Feminino , Variação Genética , Humanos , Irã (Geográfico) , Malária Vivax/epidemiologia , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , Plasmodium vivax/genética , Polimorfismo de Nucleotídeo Único , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/metabolismo , Recombinação Genética , Seleção Genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...